IDNStudy.com, ang iyong mapagkukunan para sa mabilis at maaasahang mga sagot. Sumali sa aming platform ng tanong at sagot upang makakuha ng eksaktong tugon sa lahat ng iyong mahahalagang tanong.

•••••••••••••••••••••••••••••••••••
PA HELP PO TYTY!

NONSENSE REPORT! ;)
•••••••••••••••••••••••••••••••••••••​

PA HELP PO TYTYNONSENSE REPORT class=

Sagot :

✒️SEGMENT

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{ANSWER}:} [/tex]

[tex] \qquad \Large \: \rm{\approx 9.48 \: sq. \: cm.} [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]

» Find the area of the sector that is bounded with the two radii and an intercepted arc.

[tex] \begin{align} & \bold{Formula:} \\ & \quad \boxed{\rm A_{\,Sector} = \frac{\theta}{\,360\degree} \cdot \pi r^2} \end{align} [/tex]

  • [tex] A_{\,Sector} = \frac{\,100\degree}{360\degree} \cdot \pi (5)^2 \: cm^2 \\ [/tex]

  • [tex] A_{\,Sector} = \frac{5}{\,18\,} \cdot 25 \pi \: cm^2 \\ [/tex]

  • [tex] A_{\,Sector} = \frac{\,125\pi \,}{18} \: cm^2 \\ [/tex]

  • [tex] A_{\,Sector} \approx 6.94\pi \: cm^2 \\ [/tex]

» Let 3.14 be the approximate value of pi.

  • [tex] A_{\,Sector} \approx 6.94(3.14) \: cm^2 \\ [/tex]

  • [tex] A_{\,Sector} \approx 21.79 \: cm^2 \\ [/tex]

» Find the area of the triangle which is is bounded with the two radii and a chord.

[tex] \begin{align} & \bold{Formula:} \\ & \quad \boxed{\rm A_{\,Triangle} = \frac{\,1\,}{2} \cdot r^2 \sin \theta} \end{align} [/tex]

  • [tex] A_{\,Triangle} = \frac{\,1\,}{2} \cdot (5)^2 \sin(100\degree)\\ [/tex]

  • [tex] A_{\,Triangle} = \frac{\,1\,}{2} \cdot 25 \sin(100\degree)\\ [/tex]

  • [tex] A_{\,Triangle} \approx \frac{\,1\,}{2} \cdot 24.62\\ [/tex]

  • [tex] A_{\,Triangle} \approx 12.31 \\ [/tex]

» Find the area of the segment which is bounded by a chord and a subtended arc.

[tex] \begin{align} & \bold{Formula:} \\ & \quad \boxed{\rm A_{\,Segment} = A_{\,Sector} - A_{\, Triangle} } \end{align} [/tex]

  • [tex] A_{\,Segment} \approx 21.79 \: cm^2 - 12.31 \: cm^2 [/tex]

  • [tex] A_{\,Segment} \approx 9.48 \: cm^2 [/tex]

[tex] \therefore [/tex] The area of the shaded region is about 9.48 sq. centimeters

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

(ノ^_^)ノ