IDNStudy.com, ang komunidad ng pagbabahagi ng kaalaman at mga sagot. Magtanong ng anumang bagay at makatanggap ng kumpleto at eksaktong sagot mula sa aming komunidad ng mga propesyonal.
Sagot :
If you draw the a square inside the inscribed circle, the circle's diameter is also the diagonal of the square inside it.
The side of the square is equal to the diameter of its inscribed circle.
If 4cm is the side of the bigger square, then the diameter of the inscribed circle is also 4 cm, and the diagonal of the smaller circle is also 4 cm.
When a diagonal is drawn inside the square, it divides the square i two equal isosceles triangles. In this problem, the hypotenuse (diagonal) is equal to 4 cm.
To solve for the area of the smaller square, find the side of the isosceles triangle.
Let x be the side:
[tex]4 ^{2} = x^{2} + x^{2} [/tex]
[tex]4 ^{2} = 2 x^{2} [/tex]
[tex] \sqrt{ 4^{2} } = \sqrt{2 x^{2} } [/tex]
[tex]4 = x \sqrt{2} [/tex]
[tex] (\frac{4}{ \sqrt{2} } )( \frac{ \sqrt{2} }{ \sqrt{2} }) =x[/tex]
[tex]x= \frac{4}{2} \sqrt{2} [/tex]
[tex]x = 2 \sqrt{2} [/tex]
Area of big square:
A = (4 cm)²
A = 16 cm²
Area of small square:
=[tex](2 \sqrt{2} ) ^{2} [/tex]
=[tex](4) ( \sqrt{4} ) = (4) (2cm)[/tex]
A = 8 cm²
The area of the small (er) square is 8 cm²
The side of the square is equal to the diameter of its inscribed circle.
If 4cm is the side of the bigger square, then the diameter of the inscribed circle is also 4 cm, and the diagonal of the smaller circle is also 4 cm.
When a diagonal is drawn inside the square, it divides the square i two equal isosceles triangles. In this problem, the hypotenuse (diagonal) is equal to 4 cm.
To solve for the area of the smaller square, find the side of the isosceles triangle.
Let x be the side:
[tex]4 ^{2} = x^{2} + x^{2} [/tex]
[tex]4 ^{2} = 2 x^{2} [/tex]
[tex] \sqrt{ 4^{2} } = \sqrt{2 x^{2} } [/tex]
[tex]4 = x \sqrt{2} [/tex]
[tex] (\frac{4}{ \sqrt{2} } )( \frac{ \sqrt{2} }{ \sqrt{2} }) =x[/tex]
[tex]x= \frac{4}{2} \sqrt{2} [/tex]
[tex]x = 2 \sqrt{2} [/tex]
Area of big square:
A = (4 cm)²
A = 16 cm²
Area of small square:
=[tex](2 \sqrt{2} ) ^{2} [/tex]
=[tex](4) ( \sqrt{4} ) = (4) (2cm)[/tex]
A = 8 cm²
The area of the small (er) square is 8 cm²
Natutuwa kami na ikaw ay bahagi ng aming komunidad. Magpatuloy sa pagtatanong at pagbibigay ng mga sagot. Sama-sama tayong lumikha ng isang mas matibay na samahan. Ang IDNStudy.com ay laging nandito upang tumulong sa iyo. Bumalik ka palagi para sa mga sagot sa iyong mga katanungan.