Tuklasin ang maliwanag na mga sagot sa iyong mga tanong sa IDNStudy.com. Magtanong at makatanggap ng eksaktong sagot mula sa aming mga bihasang miyembro ng komunidad.

Learning Task 5: Solve this in your notebook, 1. Suppose that you friend factors xy + 36xy like this: 24x+y + xy = 4xy(6x + 9) == (4xy)(3)(2x + 3) 12.49(2463) Is this correct? Would you suggest any changes? 2. If the sum of the square of the number and 4 time the number is 21, what is the number? 3. The length of the rectangle is 3 less than twice the width. If the area is 9 square ft, the length and width of the rectangle, 4. Given the figure below. Find the area of the shaded part of the rectangle if the area of the big rectangle is 6 times the area of the unshaded rectangle 2x X



wG po sagutan kung di alam​

Learning Task 5 Solve This In Your Notebook 1 Suppose That You Friend Factors Xy 36xy Like This 24xy Xy 4xy6x 9 4xy32x 3 12492463 Is This Correct Would You Sugg class=

Sagot :

Answer (#1) if ever typo ung given (check picture): It is correct, but I suggest using the GCF to get the answer right away instead.

[tex]24x^2y+36xy=12xy(2x+3)[/tex]

Answer (#1):

It is wrong because you cannot factor by suddenly inserting a coefficient into a term.

[tex]x^2y+36xy=xy(x+36)[/tex]

Answer (#2):

[tex]a^2+4a=21\\\\a^2+4a-21=0\\\\(a-3)(a+7)=0\\\\a-3=0;a+7=0\\\\a=3;a=-7[/tex]

Answer (#3):

[tex]A_{rectangle}=LW\\\\9=(2W-3)(W)\\\\9=2W^2-3W\\\\2W^2-3W-9=0\\\\2W^2+(-6W+3W)-9=0\\\\2W^2-6W+3W-9=0\\\\(2W^2-6W)+(3W-9)=0\\\\2W(W-3)+3(W-3)=0\\\\(2W+3)(W-3)=0\\\\2W+3=0;W-3=0\\\\2W=-3;W=3\\\\W=-\frac{3}{2};W=3[/tex]

note that: [tex]L=2W-3[/tex]

Case 1: [tex]W=-\frac{3}{2}\\\\[/tex]

[tex]L=2W-3=2(-\frac{3}{2})-3=3-3=0[/tex]

Case 2: [tex]W=3[/tex]

[tex]L=2W-3=2(3)-3=6-3=3[/tex]

Therefore the length is 3 sq. ft. and the width is 3 sq. ft.

Answer (#4):

note: [tex]A_{rectangle}=LW[/tex]

Step 1: Form equation to solve for shaded area

[tex]A_{shaded}=A_{big,rectangle}-A_{unshaded}\\\\\\[/tex]

Step 2: Get area equation for big rectangle

[tex]A_{big,rectangle}=LW\\\\A_{big,rectangle}=(3+2x+3)(3+x+3)\\\\A_{big,rectangle}=(2x+6)(x+6)\\\\A_{big,rectangle}=2x^2+12x+6x+36\\\\A_{big,rectangle}=2x^2+18x+36[/tex]

Step 3: Get area equation for unshaded rectangle

[tex]A_{unshaded}=LW\\\\A_{unshaded}=(2x)(x)\\\\A_{unshaded}=2x^2[/tex]

Step 4: Substitute steps 3 & 4 to equation in step 1

[tex]A_{shaded}=A_{big,rectangle}-A_{unshaded}\\\\A_{shaded}=(2x^2+18x+36)-(2x^2)\\\\A_{shaded}=2x^2+18x+36-2x^2\\\\A_{shaded}=18x+36[/tex]

Step 5: Recall the statement, "...if the area of the big rectangle is 6 times the area of the unshaded rectangle"

[tex]A_{big,rectangle}=6A_{unshaded}[/tex]

Step 6: Substitute step 5 to equation in step 4

[tex]A_{shaded}=A_{big,rectangle}-A_{unshaded}\\\\A_{shaded}=6A_{unshaded}-A_{unshaded}\\\\A_{shaded}=5A_{unshaded}\\\\A_{shaded}=5(2x^2)\\\\A_{shaded}=10x^2[/tex]

Step 7: Equate step 6 and step 4, the solve for x

[tex]10x^2=18x+36\\\\10x^2-18x-36=0\\\\10x^2+(-30x+12x)-36=0\\\\(10x^2-30x)+(12x-36)=0\\\\10x(x-3)+12(x-3)=0\\\\(10x+12)(x-3)=0\\\\10x+12=0;x-3=0\\\\x=-\frac{6}{5};x=3[/tex]

Final Step: Substitute step 7 with equation of area of shaded region (step 4 or 6) using positive value of x (since measurement/dimension of shapes cannot be negative)

using step 4 equation:

[tex]18x+36=18(3)+36=54+36=90 sq. units[/tex]

using step 6 equation:

[tex]10x^2=10(3)^2=10(9)=90 sq. units[/tex]

View image Raaffy