Makakuha ng mga sagot mula sa komunidad at mga eksperto sa IDNStudy.com. Makakuha ng mabilis at eksaktong sagot sa iyong mga tanong mula sa aming mga eksperto na laging handang tumulong.

Activity C: Directions: Given right S XYZ with right angle at Y, find the missing part. 1. lfz= 10 and x = 24, find y. 2. ffz= 33 and x = 56, find y. 3. If y = 25 and x = 15, how long is z? 4. If x= 377 andz=213. find y, V Z Z 5. If y = 20 and x = 16, find z. X​

Activity C Directions Given Right S XYZ With Right Angle At Y Find The Missing Part 1 Lfz 10 And X 24 Find Y 2 Ffz 33 And X 56 Find Y 3 If Y 25 And X 15 How Lon class=

Sagot :

✏️PYTHAGOREAN THEOREM

==============================

[tex] \large \bold{\blue{DIRECTIONS:}} [/tex] Given right ∆XYZ with right angle at Y, find the missing part!

» Since XYZ is a right triangle, we can solve its sides using the Pythagorean Theorem representing x and z as the legs and y as the hypotenuse.

[tex] \large \boxed{ \begin{align}& \sf y^2 = x^2 + z^2 \\ & \sf x^2 = y^2 - z^2 \\ & \sf z^2 = y^2 - x^2 \end{align}} [/tex]

[tex] \: [/tex]

#1: If z = 10 and x = 24, find y.

  • [tex] \sf y^2 = x^2 + z^2 [/tex]

  • [tex] \sf y^2 = 24^2 + 10^2 [/tex]

  • [tex] \sf y^2 = 576 + 100 [/tex]

  • [tex] \sf y^2 = 676 [/tex]

  • [tex] \sf \sqrt{y^2} = \sqrt{676} [/tex]

  • [tex] \sf y = 26 [/tex]

[tex] \large \therefore \underline{\boxed{\tt \purple{y = 26 \: units}}} [/tex]

[tex] \: [/tex]

#2: If z = 33 and x = 56, find y.

  • [tex] \sf y^2 = x^2 + z^2 [/tex]

  • [tex] \sf y^2 = 56^2 + 33^2 [/tex]

  • [tex] \sf y^2 = 3136 + 1089 [/tex]

  • [tex] \sf y^2 = 4225 [/tex]

  • [tex] \sf \sqrt{y^2} = \sqrt{4225} [/tex]

  • [tex] \sf y = 65 [/tex]

[tex] \large \therefore \underline{\boxed{\tt \purple{y = 65 \: units}}} [/tex]

[tex] \: [/tex]

#3: If y = 25 and x = 15, how long is z?

  • [tex] \sf z^2 = y^2 - x^2 [/tex]

  • [tex] \sf z^2 = 25^2 - 15^2 [/tex]

  • [tex] \sf z^2 = 625 - 225 [/tex]

  • [tex] \sf z^2 = 400 [/tex]

  • [tex] \sf \sqrt{z^2} = \sqrt{400} [/tex]

  • [tex] \sf z = 20 [/tex]

[tex] \large \therefore \underline{\boxed{\tt \purple{z = 20 \: units}}} [/tex]

[tex] \: [/tex]

#4: If x = 3√2 and z = 2√3. find y.

  • [tex] \sf y^2 = x^2 + z^2 [/tex]

  • [tex] \sf y^2 = (3\sqrt2)^2 + (2\sqrt3)^2 [/tex]

  • [tex] \sf y^2 = 9(2) + 4(3) [/tex]

  • [tex] \sf y^2 = 18 + 12 [/tex]

  • [tex] \sf y^2 = 30 [/tex]

  • [tex] \sf \sqrt{y^2} = \sqrt{30} [/tex]

  • [tex] \sf y = \sqrt{30} [/tex]

[tex] \large \therefore \underline{\boxed{\tt \purple{y = \sqrt{30} \: units}}} [/tex]

[tex] \: [/tex]

#5: If y = 20 and x = 16, find z.

  • [tex] \sf z^2 = y^2 - x^2 [/tex]

  • [tex] \sf z^2 = 20^2 - 16^2 [/tex]

  • [tex] \sf z^2 = 400 - 256 [/tex]

  • [tex] \sf z^2 = 144 [/tex]

  • [tex] \sf \sqrt{z^2} = \sqrt{144} [/tex]

  • [tex] \sf z = 12 [/tex]

[tex] \large \therefore \underline{\boxed{\tt \purple{z = 12 \: units}}} [/tex]

==============================

#CarryOnLearning

(ノ^_^)ノ