Magtanong at makakuha ng mga sagot ng eksperto sa IDNStudy.com. Ang aming platform ay nagbibigay ng mga maaasahang sagot upang matulungan kang gumawa ng matalinong desisyon nang mabilis at madali.

The second term of an arithmetic sequence is 24 and the fifth Is 3 find the first term and common difference. Showing the solution guys pls.

Sagot :

I am not sure if there is a shorter way in solving this one, but I can show you a solution only that it is a bit longer though.

Overview:
                       24                           3   

Formula:
             [tex] t_{n} = t_{1} + (n-1) d [/tex]
We will focus first in:   24                           3   
To find d:
Substitute:
               [tex] t_{n} [/tex] for 3
               [tex] t_{1} [/tex] for 24
                n for 4 
 3 = 24 + ( 4 -1 )d
 3 = 24 + 3d
 3 - 24 = 3d
 -21 = 3d
  - 21 / 3 = 3d /3
 -7 = d
We already have d = -7, we will go back to the original one.
             24                           3   

  [tex] t_{n} = t_{1} + (n-1) d [/tex]
Substitute:

3 = [tex] t_{1} [/tex] + (5 - 1) -7
3 = [tex] t_{1} [/tex] + -28
3 = [tex] t_{1} [/tex] - 28
3 + 28 = [tex] t_{1} [/tex]
31 = [tex] t_{1} [/tex]
                
So, the common difference (d) is -7, while the first term ([tex] t_{1} [/tex]) is 31
[tex]a_5-a_2=(5-2)d \\ 3-24=3d \\ -21=3d \\ -7=d[/tex]
We now have the common difference so:
[tex]a_n=a_1+(n-1)d \\ a_2=a_1+d \\ 24=a_1-7 \\ 31=a_1[/tex]