Magtanong at makakuha ng mga sagot ng eksperto sa IDNStudy.com. Ang aming platform ay nagbibigay ng mga maaasahang sagot upang matulungan kang gumawa ng matalinong desisyon nang mabilis at madali.
Sagot :
I am not sure if there is a shorter way in solving this one, but I can show you a solution only that it is a bit longer though.
Overview:
24 3
Formula:
[tex] t_{n} = t_{1} + (n-1) d [/tex]
We will focus first in: 24 3
To find d:
Substitute:
[tex] t_{n} [/tex] for 3
[tex] t_{1} [/tex] for 24
n for 4
3 = 24 + ( 4 -1 )d
3 = 24 + 3d
3 - 24 = 3d
-21 = 3d
- 21 / 3 = 3d /3
-7 = d
We already have d = -7, we will go back to the original one.
24 3
[tex] t_{n} = t_{1} + (n-1) d [/tex]
Substitute:
3 = [tex] t_{1} [/tex] + (5 - 1) -7
3 = [tex] t_{1} [/tex] + -28
3 = [tex] t_{1} [/tex] - 28
3 + 28 = [tex] t_{1} [/tex]
31 = [tex] t_{1} [/tex]
So, the common difference (d) is -7, while the first term ([tex] t_{1} [/tex]) is 31
Overview:
24 3
Formula:
[tex] t_{n} = t_{1} + (n-1) d [/tex]
We will focus first in: 24 3
To find d:
Substitute:
[tex] t_{n} [/tex] for 3
[tex] t_{1} [/tex] for 24
n for 4
3 = 24 + ( 4 -1 )d
3 = 24 + 3d
3 - 24 = 3d
-21 = 3d
- 21 / 3 = 3d /3
-7 = d
We already have d = -7, we will go back to the original one.
24 3
[tex] t_{n} = t_{1} + (n-1) d [/tex]
Substitute:
3 = [tex] t_{1} [/tex] + (5 - 1) -7
3 = [tex] t_{1} [/tex] + -28
3 = [tex] t_{1} [/tex] - 28
3 + 28 = [tex] t_{1} [/tex]
31 = [tex] t_{1} [/tex]
So, the common difference (d) is -7, while the first term ([tex] t_{1} [/tex]) is 31
[tex]a_5-a_2=(5-2)d \\ 3-24=3d \\ -21=3d \\ -7=d[/tex]
We now have the common difference so:
[tex]a_n=a_1+(n-1)d \\ a_2=a_1+d \\ 24=a_1-7 \\ 31=a_1[/tex]
We now have the common difference so:
[tex]a_n=a_1+(n-1)d \\ a_2=a_1+d \\ 24=a_1-7 \\ 31=a_1[/tex]
Salamat sa iyong pakikilahok. Patuloy na magbahagi ng iyong mga ideya at kasagutan. Ang iyong ambag ay napakahalaga sa aming komunidad. Para sa mabilis at maasahang mga sagot, bisitahin ang IDNStudy.com. Nandito kami upang tumulong sa iyo.