IDNStudy.com, ang iyong destinasyon para sa malinaw na mga sagot. Ang aming komunidad ay nagbibigay ng eksaktong sagot upang matulungan kang maunawaan at malutas ang anumang problema.
Sagot :
Answer:
The usual way of writing the nth root of n is as n1n . In the complex plane, there are n roots for integer n (and infinitely many roots for irrational n !), but let’s focus on the positive real values for positive real arguments.
This is a fun function. Let’s call it f and look at a few values. f(1)=1 . f(2)=2–√ . f(0) … well, that is undefined. As n goes to infinity, f(n) obviously goes to one, and has the asymptotic expansion 1+logn+⋯n+⋯ .
We can find its maximum value by looking at f′(n)=n1n(1n2−lognn2) . This is obviously zero when logn=1 , that is, n=e . The maximum value is e1e=1.44466786⋯ , not an especially interesting number. For integer n, the maximum value is at f(3)=1.44224957⋯ .
Now let’s look at its value near 0. It turns out that it goes to zero very fast for positive arguments: f(10−1)≈10−10 and f(10−10)≈10−100000000000 . But for negative arguments, it blows up: f(−10−1)≈1010 , f(−11−1)≈−2.81011 and f(−10−10)≈10100000000000 . The right limit is 0, but the left limit is undefined, so the value at 0 is undefined.
Things get messy for non-real values… but another possibly interesting value is the real value of f(±i)=e∓π2 .
Salamat sa iyong kontribusyon. Huwag kalimutang bumalik upang magtanong at matuto ng mga bagong bagay. Ang iyong kaalaman ay mahalaga sa ating komunidad. Ang IDNStudy.com ay laging nandito upang tumulong sa iyo. Bumalik ka palagi para sa mga sagot sa iyong mga katanungan.