Magtanong at makakuha ng malinaw na mga sagot sa IDNStudy.com. Alamin ang mga detalyadong sagot mula sa mga bihasang miyembro ng aming komunidad na sumasaklaw sa iba't ibang paksa para sa lahat ng iyong pangangailangan.
Sagot :
[tex]Fencing\ problems\ are\ what\ we\ can\ conclude\ in\ a\ \\ real\ life\ perimeters\ problems. \\ \\ In\ order\ to\ solve\ this,\ let's\ get\ first\ the\ formula \\ of\ the\ perimeter\ of\ the\ rectangle. \\ \\ ^{Formula:} \\ _{Perimeter}=2(l)+2(w) \\ \\ ^{Given:} \\ _{length}=9 \frac{5}{6}\ yards \\ \\ _{width}=5 \frac{1}{4}\ yards [/tex]
[tex]\bold{Equation:} \\ \\ Perimeter=2(l)+2(w) \\ \\ Perimeter=2(\ 9\frac{5}{6}\ yards )+2(\ 5\frac{1}{4}\ yards) \\ \\ Solve\ first\ the\ total\ length\ or\ \underline{TL} \\ \\ TL=2(\ 9 \frac{5}{6}\ yards) \\ \\ TL= \frac{2}{1}\cdot\ 9 \frac{5}{6}\ yards \\ \\ TL= \frac{2}{1}\ \cdot\ [ \frac{54+5}{6}\ yards= \frac{59}{6}\ yards] \\ \\ TL= \frac{^{1}\not{2}}{1}\ \cdot\ \frac{59}{\not6_{3}}\to \frac{59}{3} \\ \\ \boxed{\bold{TL=\ 19 \frac{2}{3}\ yards}} [/tex]
[tex]Solving\ for\ total\ width\ or\ \underline{TW} \\ \\ TW=2\ (5\ \frac{1}{4}\ yards) \\ \\ TW= \frac{2}{1}\ \cdot \ 5\ \frac{1}{4}\ yards \\ \\ TW= \frac{2}{1}\ \cdot\ \ [ \frac{20+1}{4}\ yards= \frac{21}{4}\ yards] \\ \\ TW= \frac{^{1}\not2}{1}\ \cdot\ \frac{21}{\not4_{2}}\to \frac{21}{2}\ yards \\ \\ \boxed{\bold{TW=10 \frac{1}{2}\ yards}} [/tex]
[tex]Final\ solution: \\ Perimeter=2(l)+2(w) \\ \\ Perimeter=19 \frac{2}{3}\ yards+\ 10 \frac{1}{2}\ yards \\ \\ Perimeter= \frac{59}{3}\ yards\ +\ \frac{21}{2}\ yards\ \ \ \ \ |\ ^{Change\ the\ following\ fractions\ to} \\ . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |\ \ ^{improper\ fractions.} \\ \\ Get\ their\ common\ denominator: \\ \\ \frac{19}{3}\ yards \to\ \frac{118}{6}\ yards \\ \\ \frac{21}{2}\ yards \to\ \frac{63}{6}\ yards [/tex]
[tex]Perimeter= \frac{118}{6}\ yards +\ \frac{63}{6}\ yards \\ \\ Perimeter= \frac{181}{6}\ yards \\ \\ \boxed{\boxed{\bold{Perimeter=\ 30\ \frac{1}{6}\ yards}}} \\ \\ \\ \\ Hope\ it\ Helps :) \\ Domini [/tex]
[tex]\bold{Equation:} \\ \\ Perimeter=2(l)+2(w) \\ \\ Perimeter=2(\ 9\frac{5}{6}\ yards )+2(\ 5\frac{1}{4}\ yards) \\ \\ Solve\ first\ the\ total\ length\ or\ \underline{TL} \\ \\ TL=2(\ 9 \frac{5}{6}\ yards) \\ \\ TL= \frac{2}{1}\cdot\ 9 \frac{5}{6}\ yards \\ \\ TL= \frac{2}{1}\ \cdot\ [ \frac{54+5}{6}\ yards= \frac{59}{6}\ yards] \\ \\ TL= \frac{^{1}\not{2}}{1}\ \cdot\ \frac{59}{\not6_{3}}\to \frac{59}{3} \\ \\ \boxed{\bold{TL=\ 19 \frac{2}{3}\ yards}} [/tex]
[tex]Solving\ for\ total\ width\ or\ \underline{TW} \\ \\ TW=2\ (5\ \frac{1}{4}\ yards) \\ \\ TW= \frac{2}{1}\ \cdot \ 5\ \frac{1}{4}\ yards \\ \\ TW= \frac{2}{1}\ \cdot\ \ [ \frac{20+1}{4}\ yards= \frac{21}{4}\ yards] \\ \\ TW= \frac{^{1}\not2}{1}\ \cdot\ \frac{21}{\not4_{2}}\to \frac{21}{2}\ yards \\ \\ \boxed{\bold{TW=10 \frac{1}{2}\ yards}} [/tex]
[tex]Final\ solution: \\ Perimeter=2(l)+2(w) \\ \\ Perimeter=19 \frac{2}{3}\ yards+\ 10 \frac{1}{2}\ yards \\ \\ Perimeter= \frac{59}{3}\ yards\ +\ \frac{21}{2}\ yards\ \ \ \ \ |\ ^{Change\ the\ following\ fractions\ to} \\ . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |\ \ ^{improper\ fractions.} \\ \\ Get\ their\ common\ denominator: \\ \\ \frac{19}{3}\ yards \to\ \frac{118}{6}\ yards \\ \\ \frac{21}{2}\ yards \to\ \frac{63}{6}\ yards [/tex]
[tex]Perimeter= \frac{118}{6}\ yards +\ \frac{63}{6}\ yards \\ \\ Perimeter= \frac{181}{6}\ yards \\ \\ \boxed{\boxed{\bold{Perimeter=\ 30\ \frac{1}{6}\ yards}}} \\ \\ \\ \\ Hope\ it\ Helps :) \\ Domini [/tex]
Pinahahalagahan namin ang bawat ambag mo. Magpatuloy sa pagtatanong at pagbibigay ng mga sagot. Sama-sama tayong magtutulungan upang makamit ang ating mga layunin. May mga katanungan ka? Ang IDNStudy.com ang may sagot. Bisitahin kami palagi para sa pinakabagong impormasyon.