Since it is a projectile motion we will use d=1/2g[tex] t^{2} [/tex] for no.1
Vf=gt for no.2 and d=Vi t + 1/2g[tex] t^{2} [/tex]
a) d = 1/2g[tex] t^{2} [/tex]
1/2(-9.8m/[tex] s^{2} [/tex] (1s)[tex] ^{2} [/tex] (cancel together the [tex] s^{2} [/tex] )
= -4.9m
b) Vf = gt
= (-9.8m/[tex] s^{2} [/tex]) (1s)
= -9.8m/s
c) d=Vi t + 1/2 g[tex] t^{2} [/tex]
= -9.8 m (1s) + 1/2 (-9.8m/[tex] s^{2} [/tex]) (1s)[tex] ^{2} [/tex]
= - 9.8m + (-4.9m)
= -14.7 m
Hope it helps :-)