Sumali sa IDNStudy.com at makuha ang mabilis at kaugnay na mga sagot. Hanapin ang mga solusyong kailangan mo nang mabilis at tiyak sa tulong ng aming mga bihasang miyembro.

Find two real numbers whose difference is 40 and whose product is minimum.

Sagot :

Let [tex]x[/tex] and [tex]y[/tex] be the two numbers. We assume that [tex]x[/tex] is greater than [tex]y[/tex]. Then [tex]x-y =40[/tex] which implies that [tex]y = x-40.[/tex]
Their product P is [tex]P = x(x-40) = x^2-40x[/tex]. To find the minimum, we should find the first derivative and set it to zero:
[tex]\frac{dP}{dx} =2x-40= 0.[/tex]
By the second derivative test, since [tex]\frac{d^2 P}{dx^2} = 2 > 0[/tex]
then [tex]P[/tex] has a minimum at [tex]x[/tex].
Therefore, [tex]x = 20[/tex] and the other number is [tex]x-40=20-40=-20[/tex].
Indeed, their difference is [tex]20-(-20)=40.[/tex]