Suriin ang IDNStudy.com at makakuha ng mga sagot sa iyong mga tanong sa iba't ibang paksa. Hanapin ang mga solusyong kailangan mo nang mabilis at tiyak sa tulong ng aming mga bihasang miyembro.

Use the Information provided to write the equation of the circle in the format (x-h)^2+(y-k)^2=___:

Center lies in the first quadrant
Tangent to x = 8, y = 3, and x = 14

Sagot :

Answer:

### Step-by-Step Solution:

1. Identify the center coordinates ((h,k):

- Since the circle is tangent to ( x = 8 ) and ( x = 14 ), the horizontal distance from the center to these lines is the radius ( r ).

- Therefore, we can write:

[tex] \[

|h - 8| = r \quad \text{and} \quad |h - 14| = r

\][/tex]

- Because the circle is tangent to both lines, the distance between the lines must be twice the radius:

[tex] \[

14 - 8 = 2r \implies r = 3

\]

[/tex]

- Solving for ( h ), we have:

[tex] \[

h - 8 = 3 \implies h = 11

\][/tex]

2. identify the vertical coordinate ( k ):

- Since the circle is tangent to ( y = 3 ), the vertical distance from the center to this line is also the radius ( r ):

[tex] \[

k - 3 = r \implies k - 3 = 3 \implies k = 6

\][/tex]

3. Summarize the center and radius:

- The center is

[tex]\( (h, k) = (11, 6) \)[/tex]

- The radius is

[tex] \( r = 3 \)[/tex]

4. Write the equation of the circle:

Using the standard form

[tex]\((x-h)^2 + (y-k)^2 = r^2\), \: we \: get:[/tex]

[tex]\[

(x - 11)^2 + (y - 6)^2 = 3^2

\][/tex]

[tex] \[

(x - 11)^2 + (y - 6)^2 = 9

\][/tex]

Hence, the equation of the circle is:

[tex]\[

(x - 11)^2 + (y - 6)^2 = 9

\][/tex]