Magtanong at makakuha ng malinaw na mga sagot sa IDNStudy.com. Ang aming komunidad ay nagbibigay ng eksaktong sagot upang matulungan kang maunawaan at malutas ang anumang problema.

The product of three consecutive integers x-1, x, and x+1 is 990. Find the numbers.

Sagot :

Solution:
x³ + x² - x² - x = 990
x³ - x = 990
x³ - x - 990 = 0

Factor:
(x-10) (x² + 10x  + 99) = 0

x - 10 = 0
x = 10

Solve  x² +10x + 99 = 0 by Completing the Square or Quadratic Formula.
By Completing the Square:
ax² + bx + c = 0
ax² + bx + (b/2)² = -c + (b/2)²

b = 10
x² + 10x + (10/2)² = -99 + (10/2)²
x² + 10x + (100/4) = -99 + (100/4)
x² + 10x + 25 = -99 + 25
(x + 5) (x + 5) = -74
(x + 5)² = -74
[tex] \sqrt{(x+5) ^{2} } = \sqrt{-74} [/tex]
[tex]x + 5 = \sqrt{-74} [/tex]

[tex] \sqrt{-74} [/tex] is an imaginary number:
[tex] \sqrt{-74} = +or-i \sqrt{74} [/tex]
[tex]x + 5 -5 = -5 +i \sqrt{74} [/tex]
      and
[tex]x+5-5 =-5-i \sqrt{74} [/tex]

Therefore the roots (x) are:

x = 10

[tex]x = -5+i \sqrt{74} [/tex]

[tex]x = -5-i \sqrt{74} [/tex]